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フーリエ変換を⼯工夫して�
NMR  スペクトルをよみがえらせる�



同じ測定データでも、どのようにフーリエ変換するかによって、
スペクトルに⼤大きな違いが⽣生じることがあります。もちろん、
プロセス法も考えておいたうえで測定パラメータを設定するの
がよいのですが、もし間違えて測定してしまったとしても、
フーリエ変換をなんとか⼯工夫することによって、そのミスを少
しでもカバーできればそれに越したことはありません。今回は
プロセス⽤用パラメータをブラックボックスとして使ってしまっ
ている   NMR   初⼼心者を対象に、プロセス法における⼯工夫や
個々の基本的なパラメータの意味について、できるだけ詳しく
紹介したいと思います。�
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コヒーレンス：y 
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I 

S t1 

1
2J

xI 

yI 

t2 
反位相の状態で�
デカップリング�

↓�
⼆二重線が消える�

�
（分散波形でも起きる）�

J  →  0 

HMBC  (+  decoupling  ?)�

普通は削除 
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フーリエ変換�

1768-‐‑‒1830 　フランスの数学、物理理学者�
�
1789 　フランス⾰革命に遭遇�
�
ナポレオンに随⾏行行してエジプトに遠征�
ロゼッタ・ストーンを発⾒見見�



FID  をフーリエ変換すると  NMR  スペクトルになる�

FID�
（時間軸データ）�

スペクトル�
（周波数軸データ）�

フーリエ変換後�

1H  スピンの回転速度度を表す�
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回転は（振動する）  cos,  sin  曲線で�
表すことができる�



直接測定で検出される信号  FID�
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１秒間に  30  周回転したとすると�

1  秒�

30  Hz�

フーリエ変換�



１秒間に  10  回転していたら  ….�

10  Hz  の位置にピークが出た。�

1秒�



もう⼀一つ、１秒間に  30  回、しかも、逆向きに回転していたら�

10  Hz  と  -‐‑‒30Hz  の位置にピークが出た。�
周波数だけでなく、⼤大きさまで、きっちりと分けれた！�

何が混ざっているのか⼀一⾒見見分からない  …�
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では、試しに  cos  (40  *  t)  を掛けてみよう。�

端から端まで⾜足し合わせると０になるから、40  Hz  は間違いのようだ。�

10  Hz  の  FID�



端から端まで⾜足し合わせると０にはならないから�
どうも  10  Hz  が正しい周波数のようだ。�

今度度は、もう少し実際の振動に近そうな  cos  (10  *  t)  を掛けてみよう。�



では、cos  (11  *  t)  を掛けたら、どうなるのだろう？�

微妙  …  完全には０にならない。�
FID  がもう少し⻑⾧長ければ０になるのに  ...�
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Window  窓関数の適⽤用�
  FID  の右端に値が残っていると  …�

フーリエ変換後に  wiggle  （波）が出てしまう。�



  FID  の右端が０になるように整形すると  …�

フーリエ変換後に  wiggle（波）は消える。�

( )t0.3exp −



FID  の⻑⾧長さを半分にして、同じ  window  をかけると  …�

再び  wiggle（波）が出てしまう。�
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exp −3.0t( )



exp  窓関数で本当に⼤大丈夫？�

€ 

exp −3.0t( )

FID  サンプリングの最後の値が０に近くなるように�
この変数を調整しなければならない。�
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sin2 0.99π( )  =  1
1000

程度度であればきっと安全�
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sin2 0.99π( )  =  1
1000
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sin2 0.5π( )  =  1

sin2  (cos2)  窓関数はなかなか便便利利�
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sin2 0.99π( )  =  1
1000

€ 

exp −3aq( )  =  0.02

sin2  (cos2)  窓関数は線幅もそれほど広げない。�



ポイント数の少ない間接測定軸には、�
sin  (cos)  窓関数を使えば、�
分解能をそれほど落落とさずに済む。�
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sin2 0.99π( )
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sin2 0.5π( )

€ 

sin 0.99π( )

€ 

sin 0.4π( )

しかし、着地が急激な分、少し  wiggle  が  …�



Lorentz-‐‑‒to-‐‑‒gauss  窓関数を使えば、�
裾野が⻑⾧長く尾を引かない。�
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exp −5.4aq( )  =  0.001

分解能が向上した交換条件として、少し感度度を失う。�



感度度が許せば、lorentz-‐‑‒to-‐‑‒gauss  窓関数は�
cos2  窓関数よりもよいかも。�

1H/15N  次元ともに  cos2� 1H/15N  次元ともに  lorentz-‐‑‒to-‐‑‒gauss�



なぜ１次元ずつフーリエ変換するのか？�

exp(-i ωI t2) * exp(-i ωS t1)  
{cos(ωI t2) +i sin(ωI t2)} * {cos(ωS t1) +i sin(ωS t1)} 
 
実数部分：  cos(ωI t2)cos(ωS t1) - sin(ωI t2)sin(ωS t1) 
虚数部分：  cos(ωI t2) sin(ωS t1) + sin(ωI t2) cos(ωS t1)  



なぜ１次元ずつフーリエ変換するのか？�

exp(-i ωI t2) * exp(-i ωS t1)  
{cos(ωI t2) +i sin(ωI t2)} * {cos(ωS t1) +i sin(ωS t1)} 
 
{R(ωI) +I(ωI)} * {cos(ωS t1) +i sin(ωS t1)} 
 　↓ 　位相補正 
R(ωI) * {cos(ωS t1) +i sin(ωS t1)} 
R(ωI) * {R(ωS) +I(ωS)} 
 　↓ 　位相補正 
R(ωI) * R(ωS) 
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位相の調整�

吸収波形と分散波形に分かれる。�

分散波形:  負の時間に  FID  がないため�
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x�

照射の座標の  x 
≠�

検出の座標の  xʼ’�
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I  (x)  =  1�
I  (y)  =  0�
�
I  (x’)  =  cos  (θ)�
I  (y’)  =  sin  (θ)�
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I  (x)  =  cos  (ωt)�
I  (y)  =  sin  (ωt)�
�
I  (x’)  =  cos  (ωt+θ)  =  I  (x)  cos  (θ)  -‐‑‒  I  (y)  sin  (θ)  �
I  (y’)  =  sin  (ωt+θ)  =  I  (x)  sin  (θ)  +  I  (y)  cos  (θ)  �

θ� ωt�

検出座標（xʼ’, yʻ‘）で検出
された信号   
 　 　↓ 
θ  だけ反時計回りに回転 
 　 　↓ 
照射座標（x, y）  に移す�



照射座標と検出座標が  45°  ずれていると  …�

吸収波形/√2  -‐‑‒  分散波形/√2�

吸収波形/√2  +  分散波形/√2�
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⼀一次補正はなぜ必要？�
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これが  FID  の開始時点�

0� -‐‑‒35� -‐‑‒70� -‐‑‒105�+35�+70�

化学シフトに�
沿って位相がずれる。�



0� -‐‑‒35� -‐‑‒70� -‐‑‒105�+35�+70�

スペクトル幅を切切らずに  Ph1  を合わせる。�

+105�

Ph1�

Ph0�

Ph0  ?�

y=ax+b	


NmrPipe  と  Topspin  とでは  Ph0,  Ph1  両⽅方ともに  ±  逆転�



t1  の開始が  Δt1  分だけ遅れると  …�

０次の位相補正:  -‐‑‒180°�
１次の位相補正:  360°�
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t1  の開始が  0.5Δt1  分だけ遅れると  …�

０次の位相補正:  -‐‑‒90°�
１次の位相補正:  180°�

xʼ’�

yʼ’�

I�
y/x�

t1  の開始時点�

y�
t1�

-‐‑‒90�

+90�

0�



t1  がきっちりと  0  から始まると�
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短冊の左半分がマイナス時間に⾷食い込んでしまうのを
防ぐため、t1=0  の強度度を半分にする（FCOR=0.5）。�
0.5  Δt1  から始める場合には  FCOR=1.0�



この空⽩白の領領域は無駄�

３, ４次元での時間の損失
は⼤大きい。�



同じ測定時間ならば、もっと⾼高い分解能でとれたはず�

もし、３,４次元で  ω1  and  ω2  それぞれを半分のスペクトル幅
に縮めることができれば、測定時間は  ¼  となる（あるいは、
感度度を倍にできる）。�

0.5*SW�



t1(0)  を  Δt1/2  に設定すれば、折り返ったピークは負になるので
識識別できる。タンパク  NMR  を測る場合には、15N  SW  はできる
だけ縮めよう。しかし、直接測定軸（FID）のスペクトル幅を減
らしてはいけない。�



t1  の開始を  0.5Δt1  分だけ遅らせると、折り返り
ピークは負になる。�

位相補正:  －90°＋  α�

-‐‑‒90�

+90�

SW� 位相補正:  ＋90°＋  α�



タンパク質の⽴立立体構造解析では重要な  3D  13C-‐‑‒edted  NOESY  でも、
折り返しを活⽤用することで⾼高分解能にとれる。�



  |  nmrPipe    -‐‑‒fn  LP�
  |  nmrPipe    -‐‑‒fn  ZF  -‐‑‒pad  1�
  |  nmrPipe    -‐‑‒fn  RS  -‐‑‒rs  1  -‐‑‒sw�
  |  nmrPipe    -‐‑‒fn  SP  -‐‑‒off  0.5  -‐‑‒end  0.99  -‐‑‒pow  2  -‐‑‒c  1.0�
  |  nmrPipe    -‐‑‒fn  ZF  -‐‑‒size  256�
  |  nmrPipe    -‐‑‒fn  FT�
  |  nmrPipe    -‐‑‒fn  PS  -‐‑‒p0  0.0    -‐‑‒p1  0.0  -‐‑‒di�
  |  nmrPipe    -‐‑‒fn  POLY  -‐‑‒auto  -‐‑‒ord  0�

FID  の開始が  １ポイント遅れると  …�

1.   そのまま  FT  し、Ph0=180,  Ph1=-‐‑‒360  で補正する。�

2.   インターフェログラムを１点だけ右にシフトさせ、最初の
点を  backward-‐‑‒LP  する。�

3.   最初の点を０として  FT  し、０次ベースライン補正する。�



本当はここが  t1  ２個⽬目の点�
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分解能とスペクトル幅の関係�

€ 

acquisition  time  =  point number
spectral  width

 =  1
resolution

観測時間�

1  /  スペクトル幅�



1  /  スペクトル幅  =  0.01  秒�

観測時間  =  0.01  秒  x32  =  0.32  秒�

0-‐‑‒fill  無し�

256  まで  0-‐‑‒fill�

0-‐‑‒fill  は線幅を変えずにギザギザを無くす  →  安全�
⼀一⽅方、LP  は  FID  の未来を予測
して伸ばし、線幅を細くする。�



オーバーサンプリング・デジタルフィルター�
CD  プレーヤーの宣伝⽂文章より�
�
新開発の  16  ビット  4  倍オーバーサンプリング  LSI  を投⼊入し
ており、176.4kHz  で動作することで、4  倍オーバーサンプリ
ング⽅方式本来の優れた位相特性と通過帯域  30kHz  に及ぶ⾼高い
過渡応答特性を得ています。�
�
20  ビット  8  倍オーバーサンプリングデジタルフィルター採⽤用。
低レベルでの徹底した⾳音質の向上を図るため、エンファシス演
算精度度を改善したデジタルフィルターを採⽤用。さらに正確な再
⽣生を可能にするとともに、デジタル段階で出⼒力力レベルを  12  段
階まできめ細かくコントロール。出⼒力力レベルでの⾳音質劣劣化が無
く、鮮やかな響きを実現します。�

N  倍オーバーサンプリング�

通常よりも  N  倍速く（短い間隔で）検出する。�



観測時間  =  0.01  秒  x  32  =  0.32  秒�

観測時間  =  0.0025  秒  x  128  =  0.32  秒�

400  Hz�

100  Hz�

４倍  オーバーサンプリング�



N  倍オーバーサンプリング�

通常よりも  N  倍速く（短い  Δt  間隔で）検出する。�
�
スペクトル幅が  N  倍に広がる。�
�
ノイズを分散できる。�
�
折り返しが起こらないように、⾼高周波数側と低周波数
側を削らないといけないが、スペクトル幅が広いので、
無理理の無いフィルターをかけられる。�



デジタルフィルター�

FID  データを⼀一つずつずらしながら、重みをかけて、
⾜足し算し、平均値を求める。�

data  (i)�
data  (i-‐‑‒1)�
data  (i-‐‑‒2)�

data  (i-‐‑‒3)�

data  (i-‐‑‒4)�

×  a�
×  b�
×  c�

×  d�

×  e�

重み平均値�

波形が滑滑らかになる効果  =  ⾼高周波数を削る効果�
low-‐‑‒pass  filter�



共分散  Covariance  NMR�

k  =  1..N1      t1  =  k  Δt1�

Brüschweiler,  R.  et  al.  (2004)  J.Chem.Phys  120,  5253.�

フーリエ変換�

共分散�

i=j  の時を分散とよぶ。その平⽅方根が標準偏差となる。�



ω2� ω2�

ω1�

低分解能スペクトル� 共分散による⾼高分解能化スペクトル�

ω1  軸に対してではなく、t1  軸に対しても可能�
スペクトル（⾏行行列列）の平⽅方根が必要�

k �l� k �l�

k �

l�



3087（ω2）  ×（200*  t1  →  FT)�

⼆二次元スペクトルにおいては  ω1  軸の分解能は  
covariance  によりかなり上がる。�

3087（ω2）  ×（200*  t1  →  covariance)�

1H  direct  (ppm)�

1 H
  in
di
re
ct
  (
pp
m
)�

1H  direct  (ppm)�



溶媒の⼤大きなピークの裾野で「ベースライン」が上下してしまう。�



FT  の後に  5.5~∼12.0  ppm  で多項式補正（次数:  3）をかけてみた。�



FT  の後に  5.5~∼16.0  ppm  で多項式補正（次数:  3,  5）をかけてみた。�
•  12~∼16  ppm  のように  flat  な領領域が⻑⾧長すぎると、多項式における
⾼高次の寄与が⼩小さくなってしまうのだろうか？�

•  ⼀一⽅方の端だけ極端に曲がるようなベースラインの補正が苦⼿手。�



フィルターによる  FID  段階での補正（high-‐‑‒pass  filter）�

12~∼16  ppm  のように  flat  な領領域が⻑⾧長すぎると、多項式における⾼高次
の寄与が⼩小さくなってしまうのだろうか？�

1� 3� 7� 12� 7� 3� 1�

5� 4� 3� 4� 5� 7� 9� FID  信号強度度�

フィルター�
×� ×� ×� ×� ×� ×� ×�

5� 12� 21� 48� 35� 21� 9�

||� ||� ||� ||� ||� ||� ||�

5+12+ 21+ 48+35+ 21+ 9
1+3+ 7+12+ 7+3+1

= 4.4

畳み込み積分（convolution）�

4.4� 低周波数成分（溶媒）�

-‐‑‒0.4� ⾼高周波数成分（溶質）�

相加平均�

4.0− 4.4



FID  に  ガウシアンフィルター（qfil,  1ppm）をかけてみた。�

FID  を補正して溶媒ピー
クを消した場合には、
ベースラインが少し歪む。�



さらに  5.5~∼12.0  ppm  で多項式補正（次数:  ５）をかけてみた。�
ベースライン補正をかけた領領域の中では横線が消えた。�

間接測定軸に  LP  をかけたい場合には、FID  にベースライン補正をしない⽅方
がよいのでは？インターフェログラムを不不規則に加⼯工してしまうから。�



直接測定（FID）軸のベースライン補正�
�
FID  軸のフーリエ変換の後、最初にスペクトルの両端を少しずつ切切っておく（そ
の後の  FT  ⽤用の時間を節約するため）。両端はデジタルフィルターの影響で変な
曲がり⽅方を⽰示すことが多い。そして、全ての間接測定軸をフーリエ変換した後に、
直接測定軸のベースラインを溶媒から⽚片⽅方ずつ補正し、最後に⾒見見たい箇所の周波
数幅になるように切切りとる。�

こちらを選ぶ⽅方がよいかも（特に  NUS  では）�



デジタルフィルターによる影響を  conversion  の段階で補正した。しかし、その
補正が完璧ではないため、スペクトルの両端が少し歪む。�

デジタルフィルターによる影響を  conversion  の段階で補正しなかっ
た。補正はフーリエ変換の時に⾏行行われるので、FID  の時点では最初の
数⼗十点が変。しかし、この⽅方がベースラインがフラットになる。�



デジタルフィルターによってスペクトルの両端が少し歪んでいる。これにベース
ライン補正を施してしまうと、しばしば失敗する。�

FT  の最中に補正する⽅方がきれい。�



間接測定軸の位相補正�
�
きっちりと  90°,  -‐‑‒180°（0,  0）補正をしたとしても、少しだけ位相が
ずれることがある。�
�
これは  90-‐‑‒180-‐‑‒90  パルスでパワーを変えた場合などに起こる。つま
り、90°  パルスと  180°  パルスの間で位相が数度度ずれているのである。
しかたがないので  ph0  で補正するのであるが、ミラーイメージの
Linear-‐‑‒predictionをかける場合、インターフェログラムの段階で位相
を補正しておき、その後に  linear-‐‑‒prediction  をかけないといけない。
位相がずれたままだと、ミラーイメージが崩れるため。�
�
あるいは、Q5(90°)  や  Q3(180°)  を打った時の磁化ベクトルの挙動
が理理想的ではないため。�

T  +  t1/2� T  -‐‑‒  t1/2�

x/y� x�x ? �



間接測定軸の位相補正�
�
Bloch-‐‑‒Siegert  効果がのっても  ph0  の位相を調整することで補正はで
きる。ところが、それでも  ph1  の助けが必要になる場合は、delay  の
設定が間違えている可能性がある。�

t1�

x/y� x�

t1  の初期値として（90°パルス幅）×  (2/π)  ×  ２本分  がかかってくる。�
�
しまった！と思っても慌てずに、  �

０次の位相補正:  -‐‑‒(ph1)/2�
１次の位相補正:  360°  *  (t1  の初期値)/Δt1�

折り返ったピークの位相がずれることと、ほんの少しのベースラインの
歪みだけの犠牲ですむ。なお、shaped-‐‑‒pulse  の場合にはシミュレータ
を使う。�



x/y� x�
t1�

スペクトルが逆さまの時の処理理�

x/y�x�
t1�

x/y� x�

€ 

T − t1
2

€ 

T +
t1
2

上下（左右）が逆になる�



画像が上下で⼊入れ替わったが、�
15N  の周波数の上限と下限も変化してしまった。�

次元の周波数を逆転する操作を⾏行行うと…�
nmrPipe  -‐‑‒fn  REV  -‐‑‒sw�



正確に周波数を逆転させた結果は、�
単なる画像の上下（左右）⼊入れ替えではない。�

次元の周波数を正確に逆転する操作を⾏行行うと…�
nmrPipe  -‐‑‒fn  FT  -‐‑‒neg�



0�

+1�

+2�

+3�

-‐‑‒1�

-‐‑‒2�

測定時に設定したはずの周波数�

0�

+1�

+2�

+3�

-‐‑‒1�

-‐‑‒2�

偶数のデジタルが原因�

周波数そのものがずれてしまった�



0�

+1�

+2�

+3�

-‐‑‒1�

-‐‑‒2�

測定時に設定した周波数�

0�

+1�

+2�

+3�

-‐‑‒1�

-‐‑‒2�

上限と下限値も測定時の設定と同じ�

本当に正確に逆転させるには�

折り返し�



€ 

exp iωt( )  =  cos ωt( ) + i ⋅ sin ωt( )

€ 

exp −iωt( )  =  cos −ωt( ) + i ⋅ sin −ωt( )
                 =  cos ωt( ) − i ⋅ sin ωt( )

R�

I�

R�

I�

€ 

cos ωt( )

€ 

cos ωt( )

€ 

sin ωt( ) € 

−sin ωt( )

周波数を逆転させるには、フーリエ変換での符号を逆転させる�



普通の測定  t1  (150*)� NUS  測定（t1  →  1/4）�

Iterative  Shrinkage  Thresholding  (IST 　近接勾配法)�
NMRPipe,  Dr.  Frank  Delaglio�



与えられた２つの⽅方程式だけから３つの変数（x,  y,  z）を求められるか？�

4x + 5y – 8z = -3 
3x - 3y – 2z = 8 

NUS  時間軸データ�
（１点を  skip  し
て-‐‑‒3,  +8  の２点のみ
をサンプリング観測）�

周波数軸スペクトル�
（x,  y,  z  の３点が相当）�

4,  5,  3  などが逆フーリエ変換の法則に相当�

普通ならば、いろいろな  x,  y,  z  の組み合わせが出てきてしまうが、もし、x,  y,  z  の
うち少なくとも１つが０だと決めると、解けるかもしれない（どれが０かは事前に分
からないが）。あるいは、x,  y,  z  の絶対値の合計ができるだけ⼩小さくなるような（ノ
ルム１を⼩小さくする）組み合わせを選ぶのでも可能かもしれない。これは、時間軸と
周波数軸の間の関係をできるだけ⽭矛盾させないで（最⼩小⾃自乗法、ノルム２を⼩小さくす
る）、周波数軸スペクトルをできるだけ簡単にする（最⼤大エントロピー法）ことに相
当する。�
�
⽔水の中に落落としたインク滴が広がるように（⾃自然のエントロピーは放っておくと増え
る向きに進む）、スペクトルをできるだけ滑滑らかにするという制限を加えることに
よって、この⽅方程式をなんとか解く。�



まとめ�

PC  が苦労すればするほど、計算するやりがいが出るものである。�
 　 　↓�
PC  の速度度があまりに速くなり過ぎてしまったので、FT  をしても得
られる感動が少なくなってしまった。�
 　 　↓�
もっとスペクトルをきれいにしようと思う闘志が湧いてこない。�
 　 　↓�
今後はプロセスに⼀一週間ほどかかるような  ４次元  NUS  の⽅方がよい
かもしれない。�
 　 　↓�
NUS  は⾮非線形的であるので、しばしば期待を裏裏切切ってくれる。よっ
て闘志を再燃できるかも。それに対して線形計算である  FT  は、経験
を積めば結果が予想できてしまうので（従順すぎ）、そろそろ卒業。�


