有機低分子,生体高分子 NMR の測定 およびデータ処理において 留意したいパラメータ

第 15 回 若手 NMR 研究会 2014 年 7 月 11-13 日 7/11 (金) 14:00 ~ 16:30 生命の森リゾート(千葉)

> 横浜市立大学 - 生命医科学研究科 構造エピゲノム科学 池上貴久

この領域を観測するのは かなり時間を無駄にしない?

観測時間、スペクトル幅、分解能、サンプリング間隔 とは???

 $1/swh_1 = inf_1 = nd0 * in0$

1 / スペクトル幅 = サンプリング間隔 Δt

スペクトル幅を狭めると...

サンプリング間隔が広がる。 観測時間が長くなる。 分解能が up ↑

しかし、測定時間は同じ。

 aq_1 (間接測定軸) = inf_1 * td_1/2 aq_2 (直接測定軸) = dw*2 * td_2/2

直接測定軸のスペクトル幅はむやみに狭くしてはいけない

同じ測定時間でも分解能がかなり異なる

3次元測定では 二つの間接測定軸 (t_1, t_2) のスペクトル幅を半分ずつ にすれば 測定時間は 1/4 になる(濃度を二倍に濃くしたのと同じ)。

クイズ1

昨日 24 hr かけて野生体の HNCACB を測りました。NS=8 でしたので、 何とか解析できるぎりぎりの感度でした。今日は変異体の HNCACB を測る つもりです。

ところが、濃縮の最中にアミコンが倒れて試料をこぼしてしまい、変異体の 濃度が 1/3 になってしまいました。なんとか同じ質の HNCACB を得るに は、NS をいくらにすればよいでしょうか?

クイズ2

変異体の 2D-COSY をやっと測り終えました。後は野生体の reference を 測るだけです。ところが、500MHz-NMR のプローブが知らない間に折角の inverse から異種核用 BBO に交換されてしまいました。業者に¹H の感度 を尋ねてみたところ、inverse は 600 なのに対して、異種核用は 300 との ことでした。今からプローブを元に戻しても良いのですが、交換の仕方をよ く知りません(もう 11 pm だし)。それでは、NS を何倍にすれば、同じ 質のデータが得られるのでしょうか?

感度 sensitivity とは?

感度 (S/N) $\propto \sqrt{N_s} \propto \sqrt{T_d} \propto \sqrt{1}$ 定時間 \propto 試料濃度

積算回数だけを2倍にしても、感度は √2 倍にしかならない。 しかし、測定時間は2倍になってしまう。

測定時間が同じであれば、感度は一定である(ただし、緩和を無視)。

信号が速く緩和する場合は観測時間を長くするほど感度は落ちる。

Check 4 1 /opt/topspin3.2/examdata/nmr_exp

分子量が大きい時は FID を短めにする(or window で FID を絞る)。

 t_1 の初期値を $\Delta t_1/2$ に設定すると 折り返ったピークは負となるので 分かり易い。また スペクトル幅を少しだけ変えて測定してもよい。 (注)中心周波数をずらしても判らない。。。

D₂O ロックの位相を 76° ずらすと ...

重水素のチューニング・マッチングは? B₀ドリフト値は登録されている?

重水素ロックのパルス強度 -- 強すぎず弱すぎず --

¹³C/¹⁵N/²H 90° パルス幅は 更新されている?

¹⁵N パルスの RF-field が 20% ずれると... Check 14 1 /opt/topspin/data/tiik/nmr [*1e3 200 -25 dBw -23 dBw ý. 150 100 20 10 14 12 8 [ppm]

CPMG 実験や多重共鳴パルス実験では きっちりと tune-up されたより低い静磁場での感度に負けてしまう。

1D HNCO を使っての蛋白質試料の ¹³C 90° パルス幅の決定

塩濃度によって τ₉₀ が異なるため 蛋白質試料ごとに微調整すると良い?

¹³Co は感度が高い。化学シフトの分布が狭いので off-resonance 効果が 小さい。 $\rightarrow \pm 1^{\circ}$ 未満の差を検出できる。

A sample containing 20mM Na-acetate buffer and no salt

Arg H ϵ N ϵ C ζ : N ϵ , C ζ (160.11ppm) の off-resonance 効果によるアーティファクト

A sample containing 100 mM KCI

The power for the exact 90 deg (db₉₀) can be calculated from the power of trial (db_{trial}) and the peak ratio. $db_{90} = 20^* log_{10}(2^*acos(ratio)/\pi) + db_{trial}$

The magnetization that has never passed ¹⁵N is eliminated by the combination of phase-cyclings. Furthermore, the off-resonance effect of ϕ 1 and ϕ 2 90 deg pulses and chemical shift evolution during the short *t*₁ can also be removed by application of ϕ 4 π pulse.

The 90x-180y-90x composite pulse has a similar effect to a π pulse with a less off-resonance effect.

1D¹H-¹⁵N HSQC を使っての ¹⁵N 90° パルス幅の微調整

最高感度のマシンでは ± 0.1 µs でもスペクトルに差が出る 位相回しが少ないと アーティファクトが生じることがある

測定温度を変えるだけで 90° パルス幅も少し変わる

位相は大丈夫?

Adiabatic パルスを含んだ 3D TROSY-HN(CO)CACB

hsec24k500u

反転 π パルスの励起分布

Adiabatic pulse の使用による off-resonance 効果の解消

¹H^N chemical shift (ppm)

¹³Cの180°パルスによく使われるQ3波形

RF-磁場強度が刻々と変化する。 正負も含めた面積から on-resonance での RF-磁場強度を決める。

Avance-III 950MHz ¹³C (*f2*) 90°パルス幅

On-resonance での磁化ベクトルの軌跡は y-z 線上に載る。

励起(反転)幅は simulator か実測で見積もる。

8,000 Hz / (500 MHz * 0.2514) = 64 ppm 44 ± 32 ppm 範囲の ¹³C を反転 (aliphatic 領域はこれで十分?)

Window 関数の適用

FID の右端がOになるように整形すると...

FID の長さを半分にして、同じ window をかけると...

sin² (cos²) window 関数は、 線幅もそれほど広げない。

ポイント数の少ない間接測定軸には、 sin(cos) window 関数を使えば、 分解能をそれほど落とさずに済む。

しかし、着地が急激な分、少し wiggle が ...

Lorentz-to-gauss window 関数を使えば、 裾野が尾を引かない。

分解能が向上した交換条件として、少し感度を失う。

感度が許せば、lorentz-to-gauss window 関数は cos² window 関数よりもよい。

¹H/¹⁵N 次元ともに cos² (*qsin*) ともに lorentz-to-gauss exponential-window (*em*) では 特に注意が必要

三次元測定では両方の間接測定軸に linear prediction を使ってみよう。

3D HNCACB の¹H/¹⁵N 平面

LP をかけた次元は同じように見えるはずなのだが。

3D HNCACB の¹H/¹³C 平面

「葡萄がたくさん!」といって喜んでいてはいけない。 水分を含んで延びきった葡萄でもよいのか?

```
xyz2pipe -in fid/test%03d.fid -x -verb
  nmrPipe -fn SP -off 0.5 -end 1.0 -pow 2 -c 1.0
  nmrPipe -fn ZF -size 2048
  nmrPipe -fn FT
  nmrPipe -fn EXT -x1 5.5PPM -xn 11.2PPM -sw
  nmrPipe -fn PS -p0 101.0 -p1 0.0 -di
                                             ¥
  pipe2xyz -out ft/temp%03d.DAT -ov -x
xyz2pipe -in ft/temp%03d.DAT -y -verb
  nmrPipe -fn SP -off 0.5 -end 0.95 -pow 1 -c 1.0
  nmrPipe -fn ZF -auto
  nmrPipe -fn FT
  nmrPipe -fn PS -p0 -90.0 -p1 180.0 -di
  pipe2xyz -out ft/temp%03d.DAT -y -ov -inPlace
xyz2pipe -in ft/temp%03d.DAT -z -verb
  nmrPipe -fn LP
  nmrPipe -fn SP -off 0.5 -end 1.0 -pow 2 -c 1.0
  nmrPipe -fn ZF -size 256
  nmrPipe -fn FT
  nmrPipe -fn PS -p0 -90.0 -p1 180.0 -di
  pipe2xyz -out ft/temp%03d.DAT -z -ov -inPlace
xyz2pipe -in ft/temp%03d.DAT -y -verb
  nmrPipe -fn HT -ps90-180 -auto
  nmrPipe -fn PS -inv -hdr
  nmrPipe -fn FT -inv
  nmrPipe -fn ZF -inv
  nmrPipe -fn SP -inv -hdr
  nmrPipe -fn LP -ps90-180 -auto
  nmrPipe -fn SP -off 0.5 -end 1.0 -pow 2 -c 1.0
  nmrPipe -fn ZF -size 128
  nmrPipe -fn FT -neg
  nmrPipe -fn PS -p0 -90.0 -p1 180.0 -di
  pipe2xyz -out ft/temp%03d.DAT -y -ov -inPlace
xyz2pipe -in ft/temp%03d.DAT -x -verb
  nmrPipe -fn POLY -auto
  pipe2xyz -out ft/temp%03d.DAT -x -ov -inPlace
xyz2pipe -in ft/temp%03d.DAT -y -verb
  pipe2xyz -out ft3/HNCBCA%03d.DAT -z -ov
xyz2pipe -in ft3/HNCBCA%03d.DAT -x > hncacb.ft
```

¹³C/¹⁵N 軸の LP の方法

¹H 軸を FT (baseline 補正はしない方が 良いかも)

¹³C よりもデータ数の少ない ¹⁵N 軸に軽く window をかけて FT

¹³C 軸を LP して FT

¹⁵N 軸を 1/FT

¥

¥

¥ ¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥

¥ ¥

¥ ¥

¥

¥

¥

¹⁵N 軸(constant-time)に鏡像 LP して FT

¹H 軸の baseline 補正

z-シムさえきっちりと合わせれば x, y 方向のシムは適当でよい?

x, y シムを 2,700 unit ずつずらすと

グラジエントシムのマップは更新されている?どの位の頻度で?

こうなってしまうと NMR だけの力ではどうしようもない。。。

100 uM 15 N-labeled in 20 mM Na-Pi (pH 6.0) and 10% D₂O

170 uM ¹⁵N-labeled in 20 mM Naacetate (pH 4.0) and 10% D_2O

2D FHSQC-TROSY wfb and WG at 298K on 400MHz (1024* x 128*)

わぁー さすが !!

¹⁵N-edited NOESY on 600 MHz (room-temp. probe) ¹⁵N-edited NOESY on 800 MHz (cryogenic probe) パルスのパワーって何?

どうも ¹⁵N の decoupling が強過ぎて、試料の 温度が上がってしまうようだ。それにプローブも 壊れそう。

pcpd3 (@90°) = 150 µs を 300 µs に延ばそ う。そして、その分のパワーを減らそう。

150
$$\mu$$
s : 10⁶ / (150*4) = 1666.7 Hz (@ x dB)
300 μ s : 10⁶ / (300*4) = 833.35 Hz (@ (x+6) dB)

RF-磁場強度_{p2} = 20 * log 10 (パルス長_{p2} ÷ パルス長_{p1}) + RF-磁場強度_{p1}

RF-磁場強度(ω =- γ B₁)は電圧に比例

電力(ワット,W)は、電圧(ボルト,V)の二乗に比例する。

- 200 W = -23 dBW400 W = -26 dBW
- RF-磁場強度(V, パルス長から計算)が半分になれば 6 dB 足す。 電カパワー(W)が半分になれば 3 dBw 足す。

¹⁵N の decoupling の pcpd3 (@90°) = 150 μs を 300 μs に延ばせば、プローブへの負担は 1/4 になる。 **Decoupling の 90° パルス長は幾らに? - 15N 編 -**

我が家に 600 MHz が入ってきた。さあ 2D ¹H-¹⁵N HSQC から 始めよう。でも、FID の最中の ¹⁵N-decoupling の 90° パルス 長(pcpd3)は幾らにすればいいの ?

figure of merit 性能指数

2,300 Hz (@₁₉₀ = 109 µs) で decoupling した場合

Multidimensional NMR in Liquids by van de Ven

Decoupling の 90° パルス長は幾らに? - ¹³C 編 -

なんだ簡単だね。それじゃ Tnpk 研に入ってきた 950MHz もついでに 計算してあげよう。2D ¹H-¹³C HSQC の ¹³C-decoupling の 90° パ ルス長(pcpd2)は幾らにすればいいのかな ?

> ¹³C saturation (aliphatic) の範囲 = 41 ± 40 ppm → 80 ppm * 950MHz * 0.2514 = 19,106 Hz

GARP-4 の figure of merit : 4.8 → RF-field : 19,106/4.8 = 3,980 Hz

 $pcpd2 = 10^{6}/3,980/4 = 63 \ \mu s \ (@ 90^{\circ})$

注意書きに「55 µs より強くは絶対に打つな!」と書いてある。ぎりぎ りだったね。あれ?でもそれじゃ、芳香環も同時に観れないよ〜。

世界最高級の NMR マシンは F1 マシンの様

本当は F1 マシンに 20 人ほどのピットクルーが集まって大急ぎで仕事をしている場面の写真

He 蒸発費	3.7 hr/L	燃費	3 km/L
¹ H 最高感度	12,000	最高速度	415 km/h
本体価格	9 億円	車体価格	9 億円
年間維持費	2,500 万円	年間維持費	400-600 億円
管理者	0.2 人	ピットクルー	20 人