

# NMR による蛋白質の解析

- ・<u>化学シフト値の帰属</u>
- ・立体構造の計算
- 動的構造、柔軟性の解析
- ・相互作用部位の検出





# 距離情報である NOE を拾うにも 事前に共鳴値の帰属が必要



# <sup>1</sup>H 核だけでなく、それが共有結合している <sup>13</sup>C や <sup>15</sup>N 核の化学シフト値も帰属されていたい

<sup>1</sup>H が多数あり過ぎて、同じ「名札」を付けた <sup>1</sup>H どうしを区別するのは難しい。



#### 蛋白質と相互作用する低分子を探すにも、事前に帰属データが欲しい

2D <sup>1</sup>H-<sup>15</sup>N HSQC スペクトル



## 化学結合に存在する<sup>1</sup>*L*, <sup>2</sup>*L*, <sup>3</sup>*L* coupling を通して、磁化 (コヒーレンス)を移動させ、共鳴値どうしの相関を見つける



化学結合に沿って、INEPT でどんどん繋げていく



次元数相関する核の数例

1 1 <sup>1</sup>H

4

2 2 <sup>1</sup>H-<sup>13</sup>C

3 <sup>1</sup>H<sub>N</sub>-<sup>15</sup>N-<sup>13</sup>Cα

4  ${}^{1}H_{N} - {}^{15}N - {}^{1}H - {}^{13}C$ 

5 5  ${}^{1}H_{N}-{}^{15}N-{}^{13}C\alpha-{}^{15}N-{}^{1}H_{N}$ 

 $H_{N}$   $H_{N$ 

 $({}^{1}H_{N} - {}^{15}N - {}^{13}Co - {}^{13}C\alpha - {}^{15}N - {}^{1}H_{N})$ = (7.5, 119.3, 175.2, 55.2, 118.3, 8.8)



# 蛋白質の共鳴ピークは幅広(横緩和時間が短い)

重水素化 deuteration TROSY (cross-correlated-relaxation) 選択的標識 selective-labeling



## 重水素化により、特に<sup>13</sup>C,<sup>1</sup>HN 核の横緩和時間が長くなる



<sup>2</sup>Hαにより<sup>13</sup>Cαの横緩和速度が 1/12~1/16 になる。

<sup>1</sup>H D<sub>α</sub> 横緩和速度  $R_2$  (1/sec) (500 MHz <sup>1</sup>H)  $\tau_r$ =20 ns (~50 kDa) - 15N -  $13C_{\alpha}$  -  $13C_{0}$ D<sub>β</sub> -  $13C_{\beta}$  - D<sub>β</sub> 重水素化により、線形が先鋭になるだけでなく、 磁化移動の delay での減衰が小さくなる



(ただし、<sup>13</sup>Caの anti-phase の緩和を除く)

## TROSY パルス系列による高分子量への挑戦







<sup>15</sup>N-1Hのdd/csa TROSY 効果は静磁場強度 B<sub>0</sub>に依存する



 $\tau_r$ =20 ns (~50 kDa),  $\vartheta$ csa-dd = 15°

TROSY では doublet ピークがランダムに入れ換わってはいけない



<sup>1</sup> $H_N(\alpha) \leftarrow \rightarrow {}^1H_N(\beta)$ のランダムな交換を無くしたい <sup>1</sup> $H_N$ の縦緩和を出来るだけ遅くする → Hα などの重水素化

# 重水素化により<sup>1</sup>H<sub>N</sub> 核の縦緩和が遅くなる



自己縦緩和速度  $\rho_1$  (1/sec) (ただし、交差緩和は無視) (500 MHz <sup>1</sup>H)  $\tau_r$ =20 ns (~50 kDa)



<sup>15</sup>N の展開時間を 50ms とすると  $exp(-18 \times 0.05) = 0.41, exp(-3 \times 0.05) = 0.86$ の割合で <sup>1</sup>H<sub>N</sub>( $\alpha$ ) と <sup>1</sup>H<sub>N</sub>( $\beta$ ) が維持される



### 超高磁場 NMR (800-1100 MHz)では <sup>15</sup>N-1H の TROSY が有効

少なくとも <sup>2</sup>Hα 化しないと効果は小さい。



M9 最少培地 ← [<sup>1</sup>H, <sup>13</sup>C]-glucose, 100% D<sub>2</sub>O

Hα 重水素化率: 95% Hβ 重水素化率: 80% メチル基は CHD<sub>2</sub> の割合が多く、十分観測可能

## <sup>13</sup>C 核の直接測定(FID)の長所と短所



長所→ 双極子相互作用による  $T_2$  緩和が遅い(特に<sup>2</sup>H が付いている場合)。 したがって、線幅が狭く、高分子や常磁性金属を配位した蛋白質に適している。  $R(dd) \propto \gamma_I^2 \cdot \gamma_S^2 \cdot S(S+1)$ 

短所→ 感度が小さい。

→  $T_1$  緩和も遅いので、repetition-delay を長く待つ必要がある。

## <sup>13</sup>C 核の化学シフト値の広い分布により、線形が先鋭に見える

<sup>13</sup>C-<sup>1</sup>H の双極子双極子 <sup>13</sup>C 横緩和 半値幅 27 Hz = 0.18 ppm aliphatic <sup>13</sup>C: 10~80ppm とすると、0.0026

<sup>13</sup>C-<sup>1</sup>H の双極子双極子 <sup>1</sup>H 横緩和 半値幅 27 Hz = 0.046 ppm aliphatic <sup>1</sup>H: 0~6ppm とすると、0.0077

化学シフト分布の広がりを考慮す ると、<sup>13</sup>C よりも <sup>1</sup>H のピークの方 が3倍幅が広く見える。

<sup>13</sup>C-<sup>2</sup>H の双極子双極子 <sup>13</sup>C 横緩和 半値幅 2 Hz = 0.015 ppm aliphatic <sup>13</sup>C: 10~80ppm とすると、0.0002

重水素化により、<sup>13</sup>C の線幅は、 さらに 1/12 程度に細く見える。



600 MHz <sup>1</sup>H,  $\tau_r$ =20 ns (~50 kDa) <sup>13</sup>C-<sup>1,2</sup>H (1.08 Å)

直接観測軸(FID 側)における分解能(@ppm)は、静磁場強度に比例して増す



分解能 = 1/(1.3 s) = 0.77 Hz 0.77 Hz → 0.002 ppm (<sup>1</sup>H on 400MHz NMR) 0.77 Hz → 0.001 ppm (<sup>1</sup>H on 800MHz NMR) <sup>13</sup>C 核を間接測定から 直接測定 FID に移すこ とにより、静磁場強度に 比例した分解能の向上 を得ることができる

間接測定軸(<sup>15</sup>N 核) 測定時間に支配されてし まい、分解能(@ppm)を上 げれない。

直接測定軸(<sup>1</sup>H<sub>N</sub> 核) 測定時間に支配されずに、 高磁場による分解能 (@ppm)の向上を享受でき る。



緩和速度 R どうしは足せるが、
緩和時間 T どうしは足してはいけない



緩和時間: 1/2.7 (=37%) に落ちるまでにかかる時間 半減期: 1/2.0 (=50%) に落ちるまでにかかる時間





# たとえ立体構造の無い蛋白質でも 15N や 13C などの異種核では、化学シフトがまだ散らばる





<sup>13</sup>C-検出に伴う感度の低下

$$\frac{S}{N} \propto Conc \cdot \gamma_{exc} \cdot \gamma_{obs}^{\frac{3}{2}} \cdot B_0^{\frac{3}{2}} \cdot N_{scan}^{\frac{1}{2}}$$



# NMR の高磁場化に伴う利点



直接測定軸(FID)における分解能の増加

<sup>1</sup>H-15N TROSY 効果

磁化率の異方性による磁場配向の増加



Kovacs, H., et al. (2005) Progr. NMR Spectr. 46, 131.

<sup>13</sup>C-極低温検出器により<sup>13</sup>C-直接 FID 検出が実現可能に

→ 分解能の向上 (測定時間に支配されない)

超高磁場

→ 感度の上昇 分解能(@ppm)の向上(磁場が高い程良い)

<sup>13</sup>C の化学シフト値のスペクトル分布は、<sup>1</sup>H よりも広いので、<sup>13</sup>C の線幅は<sup>1</sup>H の線幅の 1/3 になったかのように見える。





in-phase + anti-phase

in-phase - anti-phase















$$R_2^{CSA} = \frac{\left(\sigma_{II} - \sigma_{\perp}\right)^2 \gamma_I^2 B_0^2}{18} \left\{ 4J(0) + 3J(\omega_I) \right\}$$
$$J(\omega) = \frac{2}{5} \frac{\tau_c}{1 + \omega^2 \tau_c^2}$$

**Trosy** 効果、方向情報など positive な面を逆に利用する。 <sup>13</sup>Co 化学シフトの異方性のみ考慮

 $\delta_{xx} = -115.6\,ppm, \, \delta_{yy} = -48.6\,ppm, \, \delta_{zz} = 40.6\,ppm$ 



#### Adiabatic パルスを含んだ 3D TROSY-HN(CO)CACB

hsec24k500u



## Adiabatic pulse の使用による off-resonance 効果の解消







大腸菌培養のための M9-最少培地 [2-<sup>13</sup>C]-glycerol (or [1,3-<sup>13</sup>C]-glycerol) NaH<sup>13</sup>CO<sub>3</sub> D<sub>2</sub>O



アミド<sup>1</sup>Hの存在しない Pro でも問題無し
 <sup>13</sup>Cα-FID での IPAP 不要
 <sup>1</sup>J<sub>CαCβ</sub> カップリングによる損失無し
 <sup>13</sup>Cα の縦緩和速度を金属で促進
 2D COCA と組み合わせて、主鎖の連鎖帰属が可能。

Takeuchi, K. et al. (2008) J.Am. Chem. Soc. 130, 17210.





高分子ではゆっくり回転して 低分子と高分子では  $\omega_0$  で回転 いる分子数が多い している分子数が少ない || $T_2$  が速い  $T_1$  が遅い E: 同種核 0 dd 緩 1



<sup>13</sup>C-開始よりも、縦緩和の速い<sup>1</sup>H-開始測定の方が 有利では?しかし、重水素化試料では駄目。 <sup>13</sup>Cα-<sup>1</sup>Hα 2スピン系 双極子相互作用のみ考慮



<sup>13</sup>Co, <sup>13</sup>C $\beta$  を z に flip-back すると、SOFAST の <sup>13</sup>C 版が可能 重水素化による影響は小さい(*dd* (<sup>13</sup>C $\alpha$ -<sup>1</sup>H $\alpha$ ) は  $R_1$  緩和の <sup>1</sup>/<sub>4</sub> 程度の寄与)



dd (<sup>13</sup>Cα-<sup>13</sup>Co) が分子量とともに効いてくる。

 $\delta_{xx} = -115.6 ppm, \delta_{yy} = -48.6 ppm, \delta_{zz} = 40.6 ppm$ <sup>13</sup>Ca を z に flip-back すると仮定



Data courtesy of Dr. Rainer Kümmerle, Bruker Biospin AG

0.12 mM [<sup>15</sup>N, <sup>13</sup>C]-protein (132 a.a.) in  $H_2O(90\%)$ Avance-III 950MHz at 298K [salt] = 200 mM (pH 7.5) in a normal Shigemi tube



#### <sup>1</sup>H-NMR よりも <sup>13</sup>C-NMR が有利な場合

- ◆ γ<sub>1H</sub> は大きいので、それに伴って双極子相互作用による緩和も大きい。γ<sub>13C</sub> は小さ いので、線幅が狭く、高分子や常磁性金属を配位した蛋白質に適している。
- ◆ 重水素化した大きな蛋白質では検出すべき <sup>1</sup>H の数が少ない。四級炭素からも情報 を得れる。
- ◆構造をとっていないような蛋白質においては、<sup>1</sup>Hの化学シフト値の散らばりが小さいのに対して、<sup>13</sup>Cではそれほどでもない。
- ◆ 水溶液の場合、水の信号を消す努力が不要。したがって、水消しに伴うアーティファクが無い。
- ◆ <sup>1</sup>HN は labile なので、<sup>1</sup>H-<sup>15</sup>N-HSQC などでは、水との交換が問題となる。例えば、水と速く交換する <sup>1</sup>HN は感度が悪い。
- ◆ 化学交換や構造交換においても、<sup>1</sup>H は幅広化が顕著な場合が多い。
- ◆ 双極子相互作用による横緩和は、磁場強度にあまり依存しないので、高磁場の直接 測定(FID)による高い感度と分解能を享受できる。
- ◆ 高塩濃度による感度の低下の率が小さい。

#### 逆に<sup>13</sup>C-NMR の方が不利な点

- *γ*<sub>13C</sub> が小さいので、感度が小さい。
- FID の検出の際に、<sup>1</sup> J<sub>13C-13C</sub>を除く必要がある。
- T<sub>1</sub> 緩和が長いので、interscan-delay を長く待つ必要がある。



#### <sup>13</sup>C-NMR の将来

- 重水素化した高分子量の蛋白質を高磁場で<sup>13</sup>C-検 出するのが適しているであろう(水素が<sup>2</sup>H 化されて いるので、*dd*による *T*<sub>2</sub> 緩和は遅く、線形が先鋭化さ れる)。
- 現時点での感度を考慮すると、<sup>1</sup>H<sup>N</sup> から磁化移動を 開始し、<sup>13</sup>C で検出するのが妥協策か?(その方が interscan-delay も短くて済む?)



#### 2D NOESY watergate (a mixing time of 100ms)



A 0.1mM synthesized membrane protein (75 a.a.) in 60% HFIP-d2 and 40%  $H_2O$  at 298K

#### Comparison of particular regions in the 2D NOESY spectra





### 異種核の 90°パルス長の決定







| ×0 [             |              | - 130    | 90 pu | lse wi | dth de | etern      | iinat | :10n.     |      | _ ( | •   |  | •          |   | 1.    | 1 +++ | [ <b>H</b> +++ ] |   | 1                     |        | [ . | <u> </u>         | 1        | 1. | 1   |
|------------------|--------------|----------|-------|--------|--------|------------|-------|-----------|------|-----|-----|--|------------|---|-------|-------|------------------|---|-----------------------|--------|-----|------------------|----------|----|-----|
| dn1              | 72<br>dn2    | ▲<br>dn3 | 6 /6  |        | auto   | P¶<br>nint | 20    | all<br>3D | exp  | dot | T + |  | _ <b>∓</b> | + | nhase | #     | ralibrate        |   | YU                    | Hz/ppm | m R | e Im<br>utilitie | Fid      | sn | dus |
|                  |              |          |       |        |        |            |       |           |      |     |     |  |            | r |       | J     |                  |   |                       |        |     |                  |          |    |     |
| abs              |              |          |       |        |        |            |       |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |
| 0 <b>e+</b> 0    | 6            |          |       |        |        |            |       |           |      | ļ   |     |  |            |   |       |       |                  |   |                       |        | 4   |                  |          |    |     |
|                  |              |          |       |        |        |            |       |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |
|                  |              |          |       |        |        |            |       |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |
| 00+0             | 5            |          |       |        |        |            |       |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |
| .5670            |              |          |       |        |        |            |       |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |
|                  |              |          |       |        |        |            | 1     |           |      | 1   |     |  |            |   |       |       |                  |   |                       |        | 1   |                  |          |    |     |
|                  |              |          |       |        |        |            | A     |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |
| <del>,0210</del> | <del>0</del> |          |       |        |        |            | -{    |           | -1/- | +   |     |  | ~~~        |   |       | A     | Λ                |   |                       |        | +   |                  |          |    |     |
|                  |              |          |       |        |        |            |       |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |
|                  |              |          |       |        |        |            |       |           |      | ÷   |     |  |            |   |       |       |                  |   |                       |        | +   |                  |          |    |     |
| 5.0e+            | 05           |          |       |        |        |            |       |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |
|                  |              |          |       |        |        |            |       |           |      | ļ   |     |  |            |   |       |       | ]                | 3 | $\boldsymbol{\Gamma}$ | _1]    | ÉT- | (                |          | Ц  | ſ   |
|                  |              |          |       |        |        |            |       |           |      |     |     |  |            |   |       |       |                  |   | U                     |        |     | 3-1              | <b>.</b> |    |     |
|                  |              |          |       |        |        | 0          |       |           |      |     |     |  |            |   |       |       |                  |   | _                     | 1      | h   | <b>\</b> _/Г     | C        | C  |     |
| 1.0e+            | 06           |          | _     | U      | )()    |            |       |           |      |     |     |  |            |   |       |       |                  |   | n                     | a      |     | VI               | S        | U  | J   |
|                  | C            |          |       | 1      | U      |            |       |           |      |     |     |  |            |   |       |       |                  |   |                       |        |     |                  |          |    |     |



Avance-III 950MHz<sup>13</sup>C (f2) 90°パルス幅



# 位相は大丈夫?



